NEMA LE 6

PROCEDURE FOR DETERMINING TARGET EFFICACY RATINGS FOR COMMERCIAL, INDUSTRIAL, AND RESIDENTIAL LUMINAIRES
NEMA Standards Publication LE 6-2009

Procedure for Determining Target Efficacy Ratings for Commercial, Industrial, and Residential Luminaires

Published by:

National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209

www.nema.org

© Copyright 2009 by the National Electrical Manufacturers Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
The information in this publication was considered technically sound by the consensus of persons engaged in the development and approval of the document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this document.

NEMA standards and guideline publications, of which the document contained herein is one, are developed through a voluntary consensus standards development process. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this publication. While NEMA administers the process and establishes rules to promote fairness in the development of consensus, it does not write the document and it does not independently test, evaluate, or verify the accuracy or completeness of any information or the soundness of any judgments contained in its standards and guideline publications.

NEMA disclaims liability for any personal injury, property, or other damages of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this document. NEMA disclaims and makes no guaranty or warranty, expressed or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this document will fulfill any of your particular purposes or needs. NEMA does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this standard or guide.

In publishing and making this document available, NEMA is not undertaking to render professional or other services for or on behalf of any person or entity, nor is NEMA undertaking to perform any duty owed by any person or entity to someone else. Anyone using this document should rely on his or her own independent judgment or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this publication may be available from other sources, which the user may wish to consult for additional views or information not covered by this publication.

NEMA has no power, nor does it undertake to police or enforce compliance with the contents of this document. NEMA does not certify, test, or inspect products, designs, or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety-related information in this document shall not be attributable to NEMA and is solely the responsibility of the certifier or maker of the statement.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Foreword</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
<td>iii</td>
</tr>
<tr>
<td>Section 1</td>
<td>GENERAL</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Scope</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Referenced Publications</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Definitions</td>
<td>2</td>
</tr>
<tr>
<td>Section 2</td>
<td>SELECTION OF COMPONENTS</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Test Specimen—Lighting Fixture</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Test Specimen(s)—Ballasts</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Test Specimen(s)—Lamps</td>
<td>4</td>
</tr>
<tr>
<td>Section 3</td>
<td>TESTING FACILITIES AND EQUIPMENT</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Facilities</td>
<td>5</td>
</tr>
<tr>
<td>3.2</td>
<td>General Criteria</td>
<td>5</td>
</tr>
<tr>
<td>Section 4</td>
<td>CALCULATIONS</td>
<td>6</td>
</tr>
<tr>
<td>4.1</td>
<td>Target Efficacy Rating</td>
<td>6</td>
</tr>
<tr>
<td>4.2</td>
<td>Luminaire Types and Classifications</td>
<td>7</td>
</tr>
<tr>
<td>4.3</td>
<td>Calculation of Ballast Factor for Linear and Compact Fluorescent Lamps</td>
<td>7</td>
</tr>
<tr>
<td>4.4</td>
<td>Calculation of Ballast Factor for HID Ballasts</td>
<td>7</td>
</tr>
<tr>
<td>4.5</td>
<td>Calculation of Energy Effectiveness Factor</td>
<td>8</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Interior Luminaires</td>
<td>8</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Exterior Luminaires</td>
<td>8</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample Calculation of Target Efficacy Rating</td>
<td>9</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Interior Luminaire</td>
<td>9</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Exterior Luminaire</td>
<td>10</td>
</tr>
<tr>
<td>Section 5</td>
<td>RECOMMENDED REPORTING FORMAT (Example Only)</td>
<td>11</td>
</tr>
<tr>
<td>5.1</td>
<td>Interior Luminaire</td>
<td>11</td>
</tr>
<tr>
<td>5.2</td>
<td>Exterior Luminaire</td>
<td>11</td>
</tr>
<tr>
<td>Appendix</td>
<td>A Definitions of Luminaire Types and Classifications</td>
<td>12</td>
</tr>
<tr>
<td>Tables</td>
<td>4-1 Interior Luminaires EEF Calculations</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4-2 Exterior Luminaires EEF Calculations</td>
<td>8</td>
</tr>
<tr>
<td>Figures</td>
<td>4-1 Interior Luminaire TER Calculation, CU Determination</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4-2 Exterior Luminaire TER Calculation, CU Determination</td>
<td>10</td>
</tr>
</tbody>
</table>

© Copyright 2009 by the National Electrical Manufacturers Association.
Foreword

This standards publication was developed to assist individuals purchasing or designing lighting systems for interior or exterior applications in determining the Target Efficacy Rating (TER) of a lighting product. The TER is intended to be a metric, among many other considerations, to evaluate the energy effectiveness of a lighting installation.

This standards publication was promoted by the need of the luminaire manufacturing industry to have a uniform method of determining energy effectiveness of their products. The NEMA LE 6-2009 Standard supersedes the NEMA LE 5, LE 5A, and LE 5B Standards for Luminaire Efficacy Ratings (LER).

It is not the intent of this standards publication to inhibit luminaire design or to impose arbitrary tolerances on any luminaire manufacturer. Further, it is not the intent of this standards publication to be used to regulate luminaires since many other factors related to visibility, color, contrast, glare, uniformity, and other metrics must be considered based on application requirements.

The preparation of this standards publication was done by the Luminaire Section, in close cooperation with the Lamp and Ballast Sections of the NEMA Lighting Systems Division. Input of users and other interested parties has been sought and evaluated. Inquiries, comments, and proposed or recommended revisions should be submitted to the Indoor Lighting Section of NEMA by contacting:

Vice President, Technical Services
National Electrical Manufacturers Association
1300 North 17th Street, Suite 1752
Rosslyn, Virginia 22209

This standard was developed by the Luminaire Section. Section approval of the Standard does not necessarily imply that all section members voted for its approval or participated in its development. At the time it was approved, the Luminaire Section was composed of the following members:

Acuity Brands Lighting
Arcalux Corporation
BJB Electric
Cooper Lighting
Deco Lighting
Emerson/EGS Electrical Group
EYE Lighting International
GE Consumer & Industrial Lighting Systems
Hubbell Lighting, Inc.
Juno Lighting Group
National Cathode Corp.
Philips Lighting
RAB Lighting
Ruud Lighting Inc.
Satco Product Inc.
Schneider Electric-Square D Company
TayMac Corporation
Technical Consumer Products, Inc.
Thomas & Betts Corporation
Westinghouse Lighting Solutions

© Copyright 2009 by the National Electrical Manufacturers Association.
Purpose

The purpose of this standards publication is to:

a. Provide the lighting design community and procurement officials with a practical and uniform method for calculating a metric to evaluate and compare the “energy effectiveness” of luminaires.

b. Provide the ability for construction or renovations focused on sustainable design to evaluate the energy performance of luminaires.

c. Provide electrical utility companies with a method to establish performance criteria for luminaires for use with energy savings rebate programs.

d. Provide a methodology for luminaires that considers lamp and ballast components as well as the effectiveness of the luminaire optics to deliver light to an intended task.

e. Define categories for types of luminaire products based on function, physical or dimensional attributes, and optical characteristics of luminaires to enable qualified energy comparisons within a category of product.

f. Preserve for the luminaire manufacturers and the lighting industry the right to use laboratory facilities, testing methods, and completed test data that currently exist and are in accordance with approved industry standards.
Section 1
GENERAL

1.1 SCOPE
This standards publication provides a procedure for the determination of the Target Efficacy Rating (TER) for luminaires under laboratory test conditions.

This standard describes categories or types of product used in common indoor and outdoor lighting applications.

This standard does not apply to luminaires for specialized applications, including but not limited to products intended to be aimed, accent luminaires, rough or hazardous use luminaires, or emergency lighting.

1.2 REFERENCED PUBLICATIONS
The latest editions and revisions of the following publications are adopted as indicated by reference in this Standards Publication.

American National Standards Institute (ANSI)
11 West 42nd Street, 13th Floor
New York, NY 10036

ANSI C82.2-2002 Methods of Measurement of Fluorescent Lamp Ballasts
ANSI C82.3-2002 Reference Ballasts for Fluorescent Lamps
ANSI C82.5-1990 (R1995) High-Intensity Discharge and Low-Pressure Sodium Lamps
ANSI C82.6-2005 Ballasts for High-Intensity Discharge Lamps—Methods of Measurement
ANSI C78.81-2005 Double-capped Fluorescent Lamps—Dimensional and Electrical Characteristics
ANSI C78.901-2005 Single-Based Fluorescent Lamps—Dimensional and Electrical Characteristics

Illuminating Engineering Society of North America (IESNA)
120 Wall Street FL 17
New York, NY 10005-4001

Current versions of the following IESNA Publications apply

IESNA Lighting Handbook
LM-66 Single-ended Compact Fluorescent Lamps—Electrical and Photometric Measurements
LM-45 Incandescent Lamps—Electrical Measurements
LM-51 High Intensity Discharge (HID) Lamps—Electrical Measurements
LM-46 Photometric Testing of Indoor Luminaires using HID or Incandescent Filament Lamps
LM-41 Approved Method for Photometric Testing of Indoor Fluorescent Luminaires

© Copyright 2009 by the National Electrical Manufacturers Association.
1.3 DEFINITIONS

ballast: An auxiliary device used with an electrical discharge lamp(s) to obtain the necessary circuit conditions (voltage, current, and waveform) for the proper starting and operation of a particular fluorescent or high-intensity discharge (HID) lamp(s) from a particular line voltage and frequency.

ballast factor: A term used to describe the percentage of light output, produced when a fluorescent or HID lamp(s) is energized from a commercially available ballast, as compared to the light output produced when energized from a reference ballast. Ballast factor tests are run in accordance with ANSI C82.2 and ANSI C82.6.

coefficient of utilization (CU): The ratio of luminous flux (lumens) calculated as received on the work plane to the total luminous flux (lumens) emitted by the lamps alone.

compact fluorescent lamp: A compact shape fluorescent lamp with a single base that performs the entire mechanical support function.

energy effectiveness factor (EEF): The percent of lamp lumens that are received by a specified typical target area for the luminaire. The methodology for calculating EEF is a function of the luminaire product category to which the luminaire is assigned.

fixture: The structural parts of a luminaire, including parts designed to distribute the light and to position and/or protect the lamp(s), to mount and support the ballast(s), and to provide a wire way or means of connecting the lamp(s) and ballast(s) to the power supply. A fixture includes the ballast(s), but does not include lamp(s).

fluorescent lamp: A low pressure mercury electric-discharge lamp in which a fluorescing coating (phosphor) transforms a portion of the ultraviolet energy generated by the arc discharge into visible light.

high-intensity discharge (HID) lamp: An electric discharge lamp in which the light producing arc is stabilized by wall temperature, and the arc tube has a bulb wall loading in excess of three watts per square centimeter. HID lamps include groups of lamps known as mercury vapor, metal halide, and high-pressure sodium.

incandescent lamp: A lamp in which light is produced by a filament heated to incandescence by an electric current.

lumen: The SI unit of luminous flux.

luminaire: A complete lighting unit consisting of a lamp or lamps and ballast(s) together with the parts designed to distribute the light, to position and protect the lamps, and to connect the lamps through the ballast(s) to the power supply.

photometric efficiency: A ratio of luminous flux (lumens) emitted by a luminaire to that emitted by the lamp or lamps used therein.

rated lamp lumens: The rated average lumen output for a typical lamp, taken from the manufacturer's catalog. These values are substantiated by tests performed in laboratories accredited by the National Voluntary Laboratory Accreditation Program.

reference ballast: A ballast especially constructed to have certain prescribed electrical characteristics for use in testing electrical discharge lamps and other ballasts in accordance with ANSI C82.3 or ANSI C82.5.
roadway coefficient of utilization (roadway CU): The ratio of luminous flux (lumens) calculated as received within a specified distance in front of the pole (0-180 degree plane) and an infinite distance to the sides of the pole (90-270 degree plane) to the total luminous flux (lumens) emitted by the lamps alone.

room cavity ratio: A number indicating room cavity proportions, calculated from the length, width, and height.

target efficacy rating (TER): The ratio of lumens emitted from a luminaire that contribute to the illumination of a target area per watt of power consumed by the luminaire.
Section 2
SELECTION OF COMPONENTS

2.1 TEST SPECIMEN—LIGHTING FIXTURE
The luminaire selected for test shall be clean and representative of the manufacturer’s current and regular production.

2.2 TEST SPECIMEN(S)—BALLASTS
Ballast(s) chosen for the test shall be typical of current production.

Ballasts shall be tested and certified as having ballast factors that are within +/- 0.025 of established average ballast factors or the manufacturer’s published ballast factor, for the particular ballast when tested in accordance with ANSI C82.2 or ANSI C82.6.

2.3 TEST SPECIMEN(S)—LAMPS
Lamps of stable output should be used. They should be constant in light output for constant line voltage and repeated operation.

Lamps selected for tests should be typical of current production and should be selected for uniform luminance, consistent with their geometry.

Lamps shall conform to the requirements for reference lamps in accordance with ANSI C78.81 and ANSI C78.901. Where American National Standards do not exist for a given lamp type, values published by the lamp manufacturers shall apply. Lamps shall be burned for at least 100 hours in order to ensure stable electrical characteristics.
Section 3
TESTING FACILITIES AND EQUIPMENT

3.1 FACILITIES

Because of the importance of obtaining accurate and repeatable measurements, a National Voluntary Laboratory Accreditation Program (NVLAP) accredited photometric laboratory or a laboratory with a quality management system is recommended for testing.

The photometric laboratory shall have facilities for performing tests in accordance with all applicable sections of the IESNA LM-41, LM-46, and LM-66.

3.2 GENERAL CRITERIA

Because of the sensitivity of linear and compact fluorescent and to a lesser degree, low wattage HID lamp light output to air flows, all testing should be conducted in a simulated "draft free" environment. Although air movement is necessary to avoid thermal stratification, care should be taken to minimize any draft or air flow within the immediate vicinity of the test lamps or luminaire, or both.

Ambient temperature should be controlled to 25°C (77°F) within a tolerance of ± 1°C (1.8°F) for fluorescent products, and ± 5°C (9°F) for incandescent and HID products. (Reference: IESNA LM-41 and 46.)

Lamp pin or base contact connections should remain the same throughout the tests both for the calibration and for the luminaire test.
4.1 TARGET EFFICACY RATING

The Target Efficacy Rating (TER) shall be specified by the following formula:

\[
TER = EEF \times TLL \times BF / \text{Input Watts}
\]

Where:

TER = Target Efficacy Rating, expressed in rated lumens per watt. This value shall be expressed as a whole number rounding up (≥ 0.5) or down (< 0.5) as required.

EEF = Energy Effectiveness Factor and is calculated based on the class of products in section 4.2 and calculations in section 4.5. EEF shall be expressed as a two-place decimal, rounding up (≥ 0.005) or down (<0.005) as required.

TLL = Total initial lamp lumens, total number of lamps in the test luminaire multiplied by the published rated initial lamp lumens.

BF = Ballast factor of test ballast or the average ballast factor of test ballasts used in the photometric test.

INPUT WATTS = Total wattage of the luminaire as measured during the photometric test, or calculated based on the ballast manufacturers’ published data for that lamp/ballast combination if photometric test data is not available.
4.2 LUMINAIRE TYPES AND CLASSIFICATIONS

Interior Luminaires:
 a) Cylinder
 b) Downlight, Commercial
 c) Downlight, Residential
 d) Highbay, linear
 e) Highbay, non-linear
 f) Linear industrial
 g) Lowbay
 h) Parking Garage
 i) Recessed linear
 j) Striplight
 k) Surface mount, linear
 l) Surface mount, non-linear
 m) Surface mount, residential
 n) Suspended, linear
 o) Suspended, non-linear
 p) Suspended, residential

Exterior Luminaires:
 a) Area and Site
 b) Bollard
 c) Border
 d) Canopy
 e) Decorative, post top
 f) Roadway

4.3 CALCULATION OF BALLAST FACTOR FOR LINEAR AND COMPACT FLUORESCENT LAMPS

Ballast factor (BF) should be calculated in the following comparative method:

\[
BF_T = BF_B \times \left(\frac{CF_T}{CF_B} \right)
\]

Where:

- \(BF_T\) = Ballast factor of the ballast being tested (unknown ballast factor)
- \(BF_B\) = Ballast factor of base test ballast for lamp type being tested (known ballast factor)
- \(CF_T\) = Calibration Flux with ballast being tested
- \(CF_B\) = Calibration flux using same lamps as being used in test for which ballast factor is being calculated (same as used for \(CF_T\)) and operated on base ballast(s) used for \(BF_B\).

4.4 CALCULATION OF BALLAST FACTOR FOR HID BALLASTS

HID luminaire photometric testing is based on IESNA LM-46, and, in accordance with this test method, ballast performance is based on nominal wattage delivered to the test lamp. Accordingly, the ballast factor will be shown as 1.0.
4.5 CALCULATION OF ENERGY EFFECTIVENESS FACTOR

4.5.1 Interior Luminaires

Table 4-1

<table>
<thead>
<tr>
<th>Luminaire Type</th>
<th>EEF Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 3 and 7</td>
</tr>
<tr>
<td>Downlight, Commercial</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 5</td>
</tr>
<tr>
<td>Downlight, Residential</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 5</td>
</tr>
<tr>
<td>Highbay, linear</td>
<td>= average CU for a space with 50/30/20 reflectances using the CUs for RCRs 4 and 8</td>
</tr>
<tr>
<td>Highbay, non-linear</td>
<td>= average CU for a space with 50/30/20 reflectances using the CUs for RCRs 4 and 8</td>
</tr>
<tr>
<td>Linear industrial</td>
<td>= average CU for a space with 50/30/20 reflectances using the CUs for RCRs 1 and 8</td>
</tr>
<tr>
<td>Lowbay</td>
<td>= average CU for a space with 50/30/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Parking Garage</td>
<td>= average CU for a space with 30/0/20 reflectances using the CUs for RCRs 2 and 3</td>
</tr>
<tr>
<td>Recessed, Linear</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Striplight</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Surface Mount, Linear</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Surface Mount, Nonlinear</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 5</td>
</tr>
<tr>
<td>Surface Mount, Residential</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Suspended, Linear</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 4</td>
</tr>
<tr>
<td>Suspended, Nonlinear</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 5</td>
</tr>
<tr>
<td>Suspended, Residential</td>
<td>= average CU for a space with 80/50/20 reflectances using the CUs for RCRs 1 and 5</td>
</tr>
</tbody>
</table>

4.5.2 Exterior Luminaires

Table 4-2

<table>
<thead>
<tr>
<th>Luminaire Type</th>
<th>EEF Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area and Site Type I Distribution</td>
<td>= roadway CU over a target area that is +/- 1 MH in the 0-180 plane</td>
</tr>
<tr>
<td>Area and Site Type II Distribution</td>
<td>= roadway CU over a target area that is -1 MH -to- +1.75 MH in the 0-180 plane</td>
</tr>
<tr>
<td>Area and Site Type III Distribution</td>
<td>= roadway CU over a target area that is -1 MH -to- +2.75 MH in the 0-180 plane</td>
</tr>
<tr>
<td>Area and Site Type IV Distribution</td>
<td>= roadway CU over a target area that is -1 MH -to- +4 MH in the 0-180</td>
</tr>
<tr>
<td>Area and Site Type V Distribution</td>
<td>= % lamp lumens over a square target area +/- 4 MH in the 0-180 and 90-270 planes</td>
</tr>
<tr>
<td>Bollard</td>
<td>= % lumens over a square target area +/- 4 MH in the 0-180 and 90-270 planes</td>
</tr>
<tr>
<td>Border</td>
<td>= Photometric Efficiency</td>
</tr>
<tr>
<td>Canopy</td>
<td>= % lamp lumens over a square target area +/- 4 MH the 0-180 and 90-270 planes</td>
</tr>
<tr>
<td>Decorative, post top</td>
<td>= CU over a target area +/- 4 MH in both directions</td>
</tr>
<tr>
<td>Roadway Type I Distribution</td>
<td>= roadway CU over a target area that is +/- 1 MH in 0-180 plane</td>
</tr>
<tr>
<td>Roadway Type II Distribution</td>
<td>= roadway CU over a target area that is -1 -to- +1.75 MH in 0-180 plane</td>
</tr>
<tr>
<td>Roadway Type III Distribution</td>
<td>= roadway CU over a target area that is -1 -to- +2.75 MH in 0-180 plane</td>
</tr>
<tr>
<td>Roadway Type IV Distribution</td>
<td>= roadway CU over a target area that is -1 -to- +4 MH in 0-180 plane</td>
</tr>
<tr>
<td>Roadway Type V Distribution</td>
<td>= % lamp lumens over a square target area +/- 4 MH in the 0-180 and 90-270 planes</td>
</tr>
</tbody>
</table>

© Copyright 2009 by the National Electrical Manufacturers Association.
4.6 SAMPLE CALCULATION OF TARGET EFFICACY RATING

4.6.1 Interior Luminaire

Product information:
- 2-lamp recessed troffer with electronic ballast
- Lamp type: F28T5 rated at 2730 lumens
- Luminaire wattage: 60 watts
- Ballast factor: 0.95

Determine luminaire type and classification
A recessed troffer is a recessed luminaire with linear lamps, therefore it is a “Recessed Linear” classification

Determine Energy Effectiveness Factor (EEF)
For the recessed linear classification:
EEF = average CU for an 80/50/20 space using the CUs for RCRs 1 and 4

Using a photometric software tool or photometric report provided by the luminaire manufacturer or independent laboratory, identify the Coefficient of Utilization (CU) for ceiling reflectance of 80%, wall reflectance of 50%, and floor reflectance of 20% for Room Cavity Ratios 1 and 4.

<table>
<thead>
<tr>
<th>Room Cavity Ratio (RCR)</th>
<th>Coefficient of Utilization (CU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.94</td>
</tr>
<tr>
<td>4</td>
<td>0.64</td>
</tr>
<tr>
<td>EEF</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Determine Total Lamp Lumens (TLL)

\[\text{TLL} = \text{lumens per lamp} \times \text{number of lamps} \]
\[= 2730 \times 2 = 5460 \text{ lumens} \]

\[\text{TER} = \frac{\text{EEF} \times \text{TLL} \times \text{BF}}{\text{Input Watts}} \]
\[= \frac{0.79 \times 5460 \times 0.95}{60} = 68 \text{ lumens/watt} \]

Figure 4-1
Interior Luminaire TER Calculation, CU Determination
4.6.2 Exterior Luminaire

Product information:
- Architectural shoebox – Type III distribution
- Lamp type: 250w MH, 20500 lumens
- Luminaire wattage: 297 watts
- Ballast factor: 1.00

Determine luminaire type and classification
An architectural shoebox is an “Area and Site—Type III Distribution” classification

Determine Energy Effectiveness Factor (EEF)
For the Area and Site Type III distribution classification:
EEF = roadway CU over a target area that is -1 MH-to+2.75 MH in 0-180 plane

Using a photometric software tool or photometric report provided by the luminaire manufacturer or independent laboratory, identify the roadway CU over a target area that is -1 MH-to+2.75 MH in front of the luminaire and an infinite direction to the sides of the luminaire.

\[
\text{EEF} = \text{EEF (STREET SIDE)} + \text{EEF (HOUSE SIDE)}
\]

\[
= 0.48 + 0.20 = 0.68
\]

Figure 4-2
Exterior Luminaire TER Calculation, EEF Determination

Determine Total Lamp Lumens (TLL)
\[
= \text{lumens per lamp} \times \text{number of lamps}
\]
\[
= 20500 \times 1 = 20500 \text{ lumens}
\]

TER = EEF × TLL × BF / Input Watts
\[
= 0.68 \times 20500 \times 1.00 / 297 = 47 \text{ lumens / watt}
\]

© Copyright 2009 by the National Electrical Manufacturers Association.
Section 5
RECOMMENDED REPORTING FORMAT
(Example Only)

5.1 INTERIOR LUMINAIRE

<table>
<thead>
<tr>
<th>Luminaire Catalog #</th>
<th>Luminaire Category</th>
<th>Lamp Type</th>
<th>Ballast Type</th>
<th>EEF</th>
<th>Luminaire Watt Input</th>
<th>Ballast Factor</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. No.</td>
<td>Recessed Linear</td>
<td>2-28 W T5</td>
<td>Electronic</td>
<td>0.78</td>
<td>60</td>
<td>0.95</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,750 Lu/Lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 EXTERIOR LUMINAIRE

<table>
<thead>
<tr>
<th>Luminaire Catalog #</th>
<th>Luminaire Category</th>
<th>Lamp Type</th>
<th>Ballast Type</th>
<th>EEF</th>
<th>Luminaire Watt Input</th>
<th>Ballast Factor</th>
<th>TER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat. No.</td>
<td>Area and Site - Type III</td>
<td>250 W MH</td>
<td>Electronic</td>
<td>0.68</td>
<td>297</td>
<td>1.00</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20,500 Lu/Lamp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Copyright 2009 by the National Electrical Manufacturers Association.
Appendix A
DEFINITIONS OF LUMINAIRE TYPES AND CLASSIFICATIONS

A.1 Interior Luminaires:

a) Cylinder
 A wall- or surface-mounted luminaire (which may be direct or direct-indirect) in the shape of a long cylinder (whose shape is generally cylindrical form including square cross section). *Typical uses: Lobbies, conference halls, stairwells, building facades mounted at a mid-to-high mounting height.*

b) Downlight, Commercial
 Recessed luminaire, where the maximum aperture dimension is less than 12”, used in commercial installations. *Typical uses: Lobbies, conference rooms, hallways, private offices, retail, restaurants*

c) Downlight, Residential
 Recessed luminaire, where the maximum aperture dimension is less than 12”, used in single or multi-family housing units. *Typical uses: Kitchen, bath, foyer, halls*

d) Highbay, linear
 A luminaire used at a mounting height over 25 feet that utilizes linear lamps and a reflector. *Typical uses: Manufacturing, warehouses, retail, gymnasiums, industrial plants*

e) Highbay, non-linear
 A luminaire used at a mounting height over 25 feet that utilizes non-linear lamps and a reflector. *Typical uses: Manufacturing, warehouses, retail, gymnasiums, industrial plants*

f) Linear industrial
 A luminaire used at a mounting height less than or equal to 25 feet that utilizes linear lamps and a reflector. *Typical uses: Manufacturing, warehouses, retail, storage rooms, garages, workrooms*

g) Lowbay
 A luminaire used at a mounting height less than or equal to 25 feet that utilizes non-linear lamps and a reflector. *Typical uses: Manufacturing, warehouses, retail*

h) Parking Garage
 A luminaire used to light parking spaces and drive lanes in a garage. *Typical uses: Parking garage*

i) Recessed linear
 A luminaire recessed above the ceiling utilizing linear lamps and a reflector. Product is typically larger than 12”. This class of product may include a flat lens, louvers, or other materials to diffuse or distribute the light. *Typical uses: Offices, schools, conference rooms, lobbies, hallways, retail, healthcare*
j) Striplight
A surface- or pendant-mounted linear bare lamp with no reflector.

Typical uses: Manufacturing, warehouses, industrial plants, storage rooms, garages, workrooms, coves

k) Surface mount, linear
A surface-mounted luminaire utilizing linear lamps and a reflector. Product is typically larger than 12". This class of product may include a flat or wraparound lens, louvers, or other materials to diffuse or distribute the light.

Typical uses: Offices, schools, conference rooms, lobbies, hallways, retail, healthcare

l) Surface mount, non-linear
A decorative surface-mounted luminaire utilizing non-linear lamps.

Typical uses: Lobbies, conference halls, restaurants

m) Surface mount, residential
A luminaire utilizing linear or non-linear lamps mounted to the ceiling used to light a large area. May include a flat or wrap around lens.

Typical uses: Kitchen, closets

n) Suspended, linear
A luminaire utilizing linear lamps that is suspended from the ceiling and typically distributes light upward and downward. May utilize a solid, translucent, or opaque bottom.

Typical uses: Offices, schools, conference rooms, lobbies, retail, healthcare

o) Suspended, non-linear
A decorative light utilizing non-linear lamps hung from a pendant.

Typical uses: Lobbies, conference halls, restaurants

p) Suspended, residential
A decorative light utilizing linear or non-linear lamps designed for use in homes that is hung from a pendant.

Typical uses: Kitchen, dining areas

A.2 Exterior Luminaires:

a) Area and Site
An outdoor luminaire used for general lighting of a large open area, typically mounted on a pole with an arm or on top of a post. This class is categorized by the IESNA roadway classification as a Type I, Type II, Type III, Type IV, or Type V distribution.

Typical uses: Parking lots, walkways, plazas

b) Bollard
An outdoor luminaire with a height lower than pedestrian level used to light an area in close proximity.

Typical uses: Walkways

c) Border
An outdoor luminaire used to light an area in close proximity and ranges in height from less than 20" down with lower rim flush with the ground/concrete and the light emitting opening is above grade.

Typical uses: Sidewalks, promenades, drive-over applications and landscaped areas

© Copyright 2009 by the National Electrical Manufacturers Association.
d) Canopy
Surface or recessed luminaire installed under a canopy or overhang.
Typical uses: Drive-throughs, building entrances, gas stations

e) Decorative, post top
An outdoor luminaire designed for daytime and nighttime aesthetics.
Typical uses: Walkways, plazas, streetscapes, building entrances

f) Roadway
An outdoor luminaire used to light streets or roadways, typically mounted on a pole with an arm. This class is categorized by the IESNA roadway classification as a Type I, Type II, Type III, Type IV, or Type V distribution.
Typical uses: Streets, roadways